- (1) Sodium iodate; NaIO3; [7681-55-2]
- (2) Di sodium (I-4)-tetraoxomolybdate (2-) (disodium molybdate); Na2MoO4; [7631-95-0]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.; Linke, W.F.

J. Am. Chem. Soc. 1947, 69, 1080-3.

VARIABLES:

Composition at 298.2 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:

Composition of	οf	saturated	solutions
----------------	----	-----------	-----------

	-				
Nag mass %	2MoO4 mol % (compiler)	Na mass %	IO ₃ mol % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
39.38 39.16 38.63	5.378 5.375 5.354	0.00 0.58 1.79	0.000 0.083 0.258	1.432 1.437 1.450	A "
38.46 38.51 38.43 38.43 38.47 38.46	5.349 5.358 5.343 5.343 5.350 5.349	2.20 2.18 2.21 2.21 2.18 2.20	0.318 0.316 0.320 0.320 0.315 0.318	1.453 1.452 1.451 1.454 1.455 1.453	A+B " " " " "
37.23 31.49 24.24 17.89 11.41	5.090 3.995 2.825 1.943 1.163	2.24 2.54 3.08 3.42 4.16	0.319 0.335 0.373 0.386 0.3441	1.436 1.368 1.277 1.204 1.143	B " " "
5.57 0.00	0.543 0.000	5.67 8.49b	0.575 0.838	1.099 1.074	11

 $^{^{}a}$ A = Na₂MoO₄.2H₂O;

soly of NaIO₃ = $0.469 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

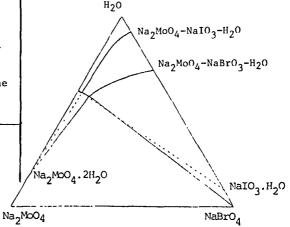
METHOD/APPARATUS/PROCEDURE:

Solubilities determined isothermally by stirring complexes of known compositions in Pyrex tubes, and sampling the equilibrated solutions by means of calibrated pipets fitted with filtering tips. Total solids were determined by evaporation of an aliquot of saturated solution and drying to constant weight at 125°C.

The iodate content in the saturated solution was determined iodometrically. A large excess of acid (HCl) was necessary to obtain the correct end-point within the short titration time in the presence of the molybdate.

ESTIMATED ERROR:

Soly: the accuracy of titrations was


within 0.1 %.

Temp: precision \pm 0.04 K.

SOURCE AND PURITY OF MATERIALS:

C.p. grade sodium molybdate dihydrate completely dehydrated by heating to 180° C, and stored at 150°C. The purity of this anhydrous salt was found to be 100.0 %. C.p. grade sodium iodate was found to be pure within 1/1000.

COMMENTS AND/OR ADDITIONAL DATA:

 $B = NaIO_3.H_2O$

b For the binary system the compiler computes the following:

COMPONENTS: (1) Sodium carbonate; Na₂CO₃; [4917-19-8]

(2) Sodium iodate; NaIO3; [7681-55-2]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

Am. J. Sci. 1933, 25, 499-502.

VARIABLES:

Composition

T/K = 273 - 323

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL	VALUES:	Composition of	saturated s	solutions	
t/°C	Na mass %	mol % (compiler)	Ma ₂ mass %	mol % (compiler)	Nature of the solid phase ^a
0	-	-	6.42	1.15	A
	0.81 0.83	0.078 0.080	6.30 6.27	1.14 1.13	A+C
	2.42 ^b	0.225	-	-	С
25	- 0.52	- 0.059	22.60 22.44	4.728 4.715	A "
	2.16 2.17	0.247 0.248	22.22 22.22	4.745 4.746	A+D "
	2.54 8.66 ^b	0.282 0.856	18.82 -	3.898 -	D "
40	- 0.50	- 0.063	32.83 32.67	7.670 7.667	B ''
	1.79 1.75	0.227 0.222	32.09 32.00	7.603 7.570	B+D
	2.00 11.71 ^b	0.248 1.193	29.87 -	6.918 -	D "
				conti	nued

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Sodium iodate, sodium carbonate and water were placed in glass stoppered bottles and rotated in a thermostat. Twenty-four hours were allowed for the attainment of equilibrium at which time samples of the solution were drawn off through glass wool filters for analysis.

Sodium iodate content was determined by adding excess KI, acidifying with sulfuric acid, and titrating the liberated iodine with thiosulfate solution. Sodium carbonate was detd in a second sample by titration with HCl using methyl orange indicator. In these carbonate titrations, a constant light source was used and the end point was compared with a standard made by saturating water containing a few drops of methyl orange with carbon dioxide.

The composition of the dry solid phase was determined by the method of Schreinemakers.

SOURCE AND PURITY OF MATERIALS:

The authors only state that sodium iodate and carbonate were purified by customary methods.

ESTIMATED ERROR:

Nothing specified.

- (1) Sodium carbonate; Na₂CO₃; [4917-19-8]
- (2) Sodium iodate; NaIO₃; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

Am. J. Sci. 1933, 25, 499-502.

EXPERIMENTAL VALUES: (Continued)

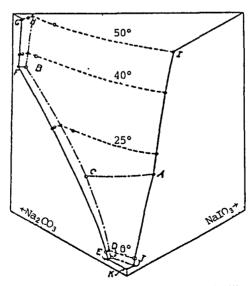
Composition of saturated solutions

	N	aIO ₃	Na	₂ C0 ₃	Nature of the
t/°C	mass %	mo1 % (compiler)	mass %	mol % (compiler)	solid phase ^a
50	- 1.30	- 0.163	32.16 31.52	7.457 7.374	В
	2.42 2.54	0.307 0.322	31.31 31.23	7.411 7.396	B+D
	3.34 14.06	0.401 1.468	25.44 -	5.701 -	D "

^a $A = Na_2CO_3.10H_2O$; $B = Na_2CO_3.H_2O$; $C = NaIO_3.5H_2O$; $D = NaIO_3.H_2O$

b For the binary system the compiler computes the following:

soly of $NaIO_3 = 0.125 \text{ mol kg}^{-1}$ at $0^{\circ}C$


 $= 0.479 \text{ mol kg}^{-1} \text{ at } 25^{\circ}\text{C}$

 $= 0.6702 \text{ mol kg}^{-1} \text{ at } 40^{\circ}\text{C}$

 $= 0.8267 \text{ mol kg}^{-1} \text{ at } 50^{\circ}\text{C}$

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram is given below (based on mass % units).

System NaIO-Na₂CO-H₂O, showing the solubility isotherms at four temperatures, and the stability areas of the five solid phases. No double salt exists.

COMPONENTS: (1) Sodium nitrate; NaNO₃; [7631-99-4] Foote, H.W.; Vance, J.E. (2) Sodium iodate; NaIO₃; [7681-55-2] Am. J. Sci. 1929, 18, 375-82. (3) Water; H₂O; [7732-18-5] PREPARED BY: Composition T/K = 273 - 308

					····	
EXPERIMENTAL	VALUES:	Composition	of saturated	d solutions		
	Na	103	Nat	NO ₃	Nature of the	
t/°C	mass %	mol % (compiler)	mass %	mol % (compiler)	solid phase ^a	
		(Compiler)		(compiler)		- 1
0	-	-	42.13	13.37	Α	1
	0.82	0,113	41.76	13.34	A+D	ı
	0.82	0.112	41,71	13.32	**	
	0.86	0.117	41.15	13.06	D	
	1.00	0.131	37.53	11.44	**	ı
	1.16	0.147	34.61	10.24	**	- 1
	1.31	0.163	32.57	9.438	"	Ì
	1.38	0.171	32.19	9.298	B+D	
	1.31	0.163	32.45	9.391	**	Ì
2	1.26	0.151	29.18	8.153	В	
	1.06	0.117	21.42	5.526	**	ì
	2.42 ^b	0.225	-	-	**	-
8	-	-	43.99	14.27	A	
	1.67	0,236	43.28	14.25	A+D	- 1
	1.67	0.236	43.21	14.21	**	- 1
	1.88	0.259	40.80	13.08	D	
	1.96	0.266	39.54	12.50	C+D	
	2.02	0.274	39.36	12.42	C	
	2.27	0.285	32.23	9.418	***	ĺ
				co	ntinued	

AUXILIARY INFORMATION

Sodium iodate, sodium nitrate and water were placed in glass stoppered bottles and rotated in a thermostat. Samples of the solution were drawn off through glass wool filters. The iodate content was determined by adding KI to the solution, acidifying with sulfuric acid, and titrating the free iodine with sodium thiosulfate solution. The nitrate content was calculated from the iodate concentration and the total mass of salts in solution. Water was found by difference. The solid phases were analyzed as wet residues after largely freeing them from water by pressing between filter papers. The composition of the dry residue was determined by Schreinemakers' method.

METHOD/APPARATUS/PROCEDURE:

SOURCE AND PURITY OF MATERIALS: Sodium iodate and nitrate used were c.p. products which were recrystallized once.

ESTIMATED ERROR:

Nothing specified.

- (1) Sodium nitrate; NaNO3; [7631-99-4]
- (2) Sodium iodate; NaIO₃; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

Am. J. Sci. 1929, 18, 375-82.

EXPERIMENTAL VALUES: (Continued)

Composition	οf	saturated	solutions
-------------	----	-----------	-----------

	N.	aIO ₃	N.	aNO3	Nature of the
t/°C	mass %	mol % (compiler)	mass %	mo1 % (compiler)	solid phase ^a
8	2.25 2.22	0.279 0.274	31.03 30.83	8.948 8.868	B+C
	3.90 ^b	0.368	-	-	В
25	- 1.09	- 0.161	48.04 47.39	16.39 16.29	A "
	2.30 2.25	0.343 0.335	46.73 46.65	16.21 16.16	A+C
	2.38 2.55 3.69 8.66 ^b	0.340 0.350 0.400 0.856	43.18 39.88 15.94	14.34 12.76 4.018	C '' ''
35	- 1.58	- 0.241	50.15 49.25	17.58 17.47	A ''
	2.55 2.55 2.60	0.391 0.391 0.399	48.68 48.68 48.68	17.39 17.39 17.41	A+C ''
	2.66 3.85 10.57 ^b	0.400 0.456 1.065	46.99 24.96	16.45 6.886 -	C "

 $^{^{}a}$ A = NaNO₃;

soly of $NaIO_3 = 0.125 \text{ mol kg}^{-1}$ at $0^{\circ}C$; = 0.205 mol kg $^{-1}$ at $8^{\circ}C$

= $0.479 \text{ mol kg}^{-1}$ at 25°C ; = $0.5973 \text{ mol kg}^{-1}$ at 35°C

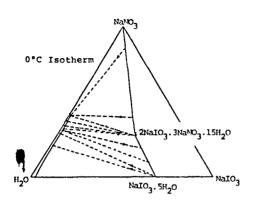
COMMENTS AND/OR ADDITIONAL DATA:

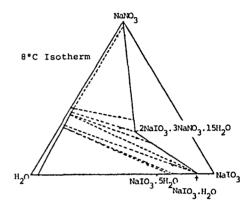
Isotherms based on mass % units are reproduced below on the following page.

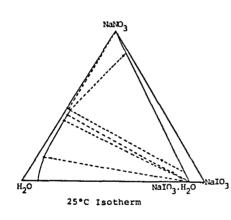
 $B = NaI0_3.5H_20;$ $C = NaI0_3.H_20;$

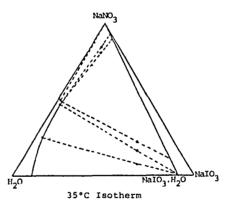
 $D = 2NaIO_3.3NaNO_3.15H_2O$

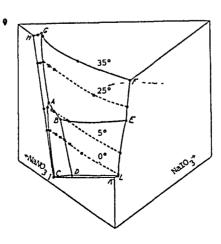
 $^{^{\}mbox{\scriptsize b}}$ For the binary system the compiler computes the following:


- (1) Sodium nitrate; NaNO₃; [7631-99-4]
- (2) Sodium iodate; NaIO₃; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]


ORIGINAL MEASUREMENTS:


Foote, H.W.; Vance, J.E.


Am. J. Sci. 1929, 18, 375-82.


COMMENTS AND/OR ADDITIONAL DATA: (Continued)

Sodium lodate

COMPONENTS:

- (1) Sodium nitrate; NaNO3; [7631-99-4]
- (2) Sodium iodate; NaIO₃ [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Cornec, M.E.; Spack, A.

Bull. Soc. Chim. Fr. 1931, 49, 582-94.

VARIABLES:

T/K = 273 to 373

Composition

REPARED BY:

Hiroshi Miyamoto

EXPERIM	ENTAL	VAL	JES:	Composition	n of satur	ated soluti	ons		
t/°C	mass	Sodi % g	lum iodate 3 ₂ /100 g ₃	mol kg ⁻¹	mass %	Sødium nitr g ₁ /100 g ₃	mo1 kg ⁻¹	Density g cm ⁻³	Nature of the solid phase ^a
0	0.53		0.92	0.046	42.0	72.9			A
	0.82		1.43	0.0723	41.9	73.0	8.59	1.360	A+S
	0.85 1.25		1.46 1.92	0.0738 0.0970	40.8 33.5	69.9 51.3		1.351 1.286	S
	1.34		2.02	0.102	32.5	49.1	5.78	1.278	S+B
	1.25		1.81	0.0915	29.6	42.8	5.04	1.251	В
5	1.28		2.28	0.115	42.8	76.4	8.99	1.373	A+S
	2.02		3.15	0.159	34.1	53.4	6.28	1.300	B+C+S
10 ^m	2.04							1.388	A+S
9.7i	1.97		3.57	0.180	43.5	79.6	9.37	1.387	A+C+S
10	1.98		3.64	0.184	43.6	80.1	9.42	1.388	A+C
15 i	2.95		3.63	0.183	15.8	19.5	2.29	1.144	B+C
20 30 35 40 50	2.14 2.43 2.58 2.77 3.24		4.11 4.88 5.83	0.208 0.247 0.295	45.7 47.8 49.7	95.8	10.3 11.3 12.32	1.405 1.423 1.432 1.442 1.462	A+C

continued....

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The details of procedure were not given. The iodate content was determined by titration with thiosulfate solution.

The total solids were determined by evaporation of the solution at about $140\,^{\circ}\text{C}$.

The compiler assumes that the concentration of the nitrate was determined by difference.

SOURCE AND PURITY OF MATERIALS:

Sodium iodate used was purchased as a "pure chemical". The salt ws recrystallized four times. The product obtained was the monohydrate.

ESTIMATED ERROR:

Nothing specified.

COMPONENTS:
(1) Sodium nitrate; NaNO3; [7631-99-4]

(2) Sodium iodate; NaIO₃; [7681-55-2]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Cornec, M.E.; Spack, A.

Bull. Soc. Chim. Fr. 1931, 49, 582-94.

EXPERIMENTAL VALUES: (Continued)

Composition of saturated solutions

t/°C		dium iodate $g_2/100 g_3$	$mol kg^{-1}$		odium nitrat g ₁ /100 g ₃		Density g cm-3	Nature of the solid phase
41.5i	2.85	6.0	0.30	50.0	106.0	12.47	1.445	A+C+D
35 ^m	2.85						1.435	A+D
50	2.90	6.39	0.323	51.7	114.1	13.42	1.458	11
60	2.97	6.87	0.347	53.8	124.4	14.64	1.474	11
70	3.16	7.68	0.388	55.7	135.3	15.92	1.491	"
80	3.35	8.60	0.435	57.7	148.2	17.44	1.509	11
90	3.60	9.79	0.495	59.6	162.3	19.10	1.528	11
100	3.94	11.40	0.5761	61.5	177.9	20.93	1.549	11
15	3.05	3.49	0.176	9.4	10.8	1.27	1.096	В
15	2.97	3.50	0.177	12.2	14.4	1.69	1.116	11
15	2.95	3.60	0.182	15.0	18.3	2.15	1.138	11
15 ^m	3.04	3.89	0.197	18.8	24.1	2.84	1.170	**
15	2.85	3.62	0.183	18.4	23.3	2.74	1.164	С
15 ^m	3.03	3.66	0.185	14.3	17.2	2.02	1.133	11
15 ^m	3.48	3.97	0.201	8.8	10.1	1.19	1.096	11

^a A = NaNO₃; B = NaIO₃.5H₂O; C = NaIO₃.H₂O; D = NaIO₃

 $S = double salt: 2NaIO_3.3NaNO_3.15H_20.$

m Metastable

i Interpolated.

- (1) Sodium nitrate; NaNO3; [7631-99-4]
- (2) Sodium iodate; NaIO3; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Hill, A.E.; Donovan, J.E.

J. Am. Chem. Soc. 1931, 53, 934-41.

VARIABLES:

Composition

T/K = 278.15 - 313.15

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL	VALUES:	Composition of	f saturated so	lutions	
t/°C mas	NaIO ₃ s % mol % (compile	mass %	NaNO ₃ mol % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
5 3.3 1.5 1.5 1.6 1.7 1.8 1.7 2.1	8 0.151 5 0.175 5 0.193 5 0.210 7 0.230 8 0.220	0.00 4.50 22.59 26.38 28.44 30.70 31.38 31.54	0.00 1.00 5.927 7.195 7.932 8.781 9.030 9.128	1.028 1.042 1.182 1.214 1.230 1.255 1.262 1.263	A "" " " " " " " "
2.0 1.8 1.9	7 0.260 6 0.233	32.48 32.37 34.34	9.493 9.424 10.23	1.275 1.269 1.291	" " A+E
1.7 1.6 1.5 1.4	0 0.213 2 0.204	36.69 38.38 39.17 40.40	11.19 11.91 12.25 12.80	1.308 1.324 1.331 1.336	E "
1.2 1.0 0.0	0.141	42.7442.9443.42	13.90 13.95 13.99	1.359 1.359 1.368	E+D D ''

continued....

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

For sodium iodate-sodium nitrate-water system, weighed quantities of these salts were treated with weighed amounts of water in Pyrex test-tubes. The tubes were slow-ly rotated in a water-thermostat at the desired temperature for about two weeks. After the slns were allowed to settle, samples were withdrawn into a calibrated pipet fitted with a small cotton filter. One sample was weighed and evaporated in a platinum dish to constant weight at 110°C. From this the water content of the saturated solution was determined.

To determine the NaIO3 content, a second weighed sample was treated with KI and H2SO4, and titrated with Na2S2O3. The sodium nitrate content was obtained by difference.

SOURCE AND PURITY OF MATERIALS:

"Good grade" sodium iodate and sodium nitrate were purified by recrystallization.

ESTIMATED ERROR:

Soly: the error for the analysis of iodate by iodometry was within 0.2 %.

Temp: precision \pm 0.05 K.

- (1) Sodium nitrate; NaNO3; [7631-99-4]
- (2) Sodium iodate; NaIO₃; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Hill, A.E.; Donovan, J.E.

J. Am. Chem. Soc. 1931, 53, 934-41.

EXPERIMENTAL VALUES: (Continued)

Composition of saturated solutions

	N	aIO3	NaN	103	Density	Nature of the
t/°C	mass %	mol % (compiler)	mass %	mo1 % (compiler)	g cm ⁻³	solid phase ^a
25	8.67 ^b	0.857	0.00	0.00	1.077	В
	6.38	0.634	3.26	0.754	1.078	11
	5.99	0.596	3.91	0.906	1.078	11
	4.80	0.486	7.32	1.726	1.092	11
	4.30	0.444	10.10	2.429	1.109	***
	3.68	0.399	16.08	4.058	1.149	11
	3.41	0.381	19.47	5.060	1.171	11
	3.06	0.367	27.16	7.593	1.232	11
	2.84	0.361	32.67	9.661	1.276	11
	2.60	0.350	38.19	11.98	1.328	11
	2.31	0.337	45.12	15.34	1.392	"
	2.23	0.332	46.81	16.24	1.408	B+D
	1.09	0.161	47.44	16.32	1.396	D
	0.00	0.00	47.98	16.35	1.388	11
50	13.95 ^b	1.454	0.00	0.00	-	В
}	9.63	1.011	5.74	1.403	-	**
	6.22	0.700	17.03	4.460	_	11
	4.82	0.598	28.18	8.136	-	**
	3.92	0.544	39.15	12.65	-	11
	4.00	0.561	39.94	13.05	-	"
İ	3.84	0.548	41.53	13.80	-	B+C
	3.77	0.542	42.26	14.16	-	С
	3.64	0.531	43.46	14.75	-	11
1	3.46	0.515	45.23	15.66	-	"
	3.09	0.481	49.11	17.80	-	"
	2.91	0.469	51.86	19.46	-	C+D
	1.58	0.252	52.55	19.49	-	מ
	0.00	0.000	53.50	19.61	-	**

 $^{^{}a}$ A = NaIO₃.5H₂O; B = NaIO₃.H₂O; C = NaIO₃; D = NaNO₃;

soly of NaIO₃ = 0.172 mol
$$kg^{-1}$$
 at 5°C

$$= 0.480 \text{ mol kg}^{-1} \text{ at } 25^{\circ}\text{C}$$

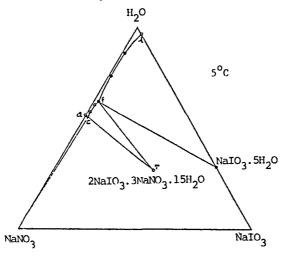
=
$$0.8192 \text{ mol kg}^{-1}$$
 at 50°C

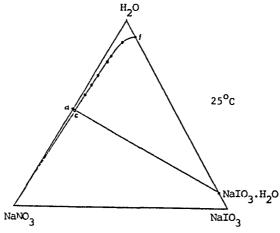
continued....

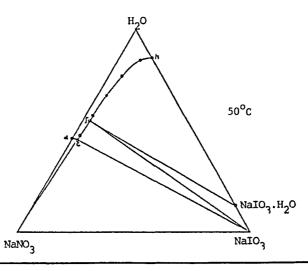
 $E = 2NaIO_3.3NaNO_3.15H_2O.$

b For the binary system the compiler computes the following:

- (1) Sodium nitrate; NaNO3; [7631-99-4]
- (2) Sodium iodate; NaIO₃; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]


ORIGINAL MEASUREMENTS:


Hill, A.E.; Donovan, J.E.


J. Am. Chem. Soc. 1931, 53, 934-41.

COMMENTS AND/OR ADDITIONAL DATA:

Isotherms based on mass % units are reproduced below.

- Sodium sulfate; Na₂SO₄; [7757-82-6] (1)
- (2) Sodium iodate; NaIO3; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

Am. J. Sci. 1930, 19, 203-13.

VARIABLES: Composition

T/K = 298 - 323

PREPARED BY:

Hiroshi Miyamoto

ERIMENTAL		Composition			
t/°C	mass %	aIO ₃ mol % (compiler)	Na mass %	2 ^{SO} 4 mo1 % (compiler)	Nature of the solid phase ^b
25	- 2.20	0.252	21.75 21.30	3.405 3.402	A "
	2.80 2.78 2.80	0.323 0.320 0.323	21.18 21.18 21.19	3.402 3.401 3.404	A+C ''
	3.17 3.76 8.66 ^c	0.353 0.400 0.856	17.52 12.64	2,716 1.874 -	C "
29.5	-	-	28.12	4.727	A
	1.62 1.53	0.198 0.187	27.72 27.72	4.730 4.725	A+E ''
	1.52 1.90	0.184 0.228	26.85 25.68	4.530 4.294	E
	2.70 2.73	0.325 0.328	25.17 24.86	4.225 4.159	C+E
	9.47 ^c	0.943	-	-	С
35	-	-	33.10	5.905	В
(A)	0.15 0.15	0.019 0.019	32.86 32.91	5.856 5.868	B+D " ntinued

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Sodium iodate, sodium sulfate and water were placed in glass stoppered bottles and the bottles rotated in a thermostat. Two weeks were allowed for the attainment of equilibrium except in the case of the solubility isotherm at 25°C and 50°C where a minimum of 48 hours were allowed.

Samples of the solution were drawn off through glass wool filters for analysis. The composition of the dry solid phases were determined by the method of Schreinemakers'. Sodium iodate in the liquid and solid phases was determined by adding potassium iodide to the samples, acidifying with sulfuric acid, and titrating the liberated iodine with thiosulfate solution. The sulfate content was calculated from the iodate concentration and the mass of total salts. Water was found by difference.

SOURCE AND PURITY OF MATERIALS: The authors only stated that sodium iodate and sodium sulfate were purified by customary methods.

ESTIMATED ERROR:

Nothing specified.

COMPONENTS: (1) Sodium sulfate; Na₂SO₄; [7757-82-6]

(2) Sodium iodate; NaIO₃; [7681-55-2]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

Am. J. Sci. 1930, 19, 203-13.

ERIMENTAL		ntinued) Composition	of saturat	ed solutions	
	Na	103	Na ₂	so,	Nature of the
t/°C	mass %	mol % (compiler)	mass %	mol % (compiler)	solid phase ^b
35 (A)	0.11	0.014	32.83	5.845	D
(A)	0.16	0.020	32.18	5.688	11
	0.29 0.57	0.036 0.070	30.92 29.63	5.392 5.105	***
	0.62	0.076	28.98	4.958	D+E
	0.80	0.098	28.77	4.921	11
	1.30	0.156	26.06	4.345	E
	2.34	0.276	23.62	3.878	**
	3.33	0.392	22.57	3.705	C+E
	3.59	0.415	20.70	3.338	C
	3.73 4.47	0.426 0.493	19.33 15.30	3.075 2.350	**
	10.57°	1.065	-	-	11
35	-	-	33.10 ^a	5.905	В
(B)	0.15 ^a	0.019	32.86	5.856	B+D
	0.15 ^a	0.019	32.91	5.868	11
	0.10	0.013	32.82	5、842	D
	0.28	0.035	31.06 30.35	5.424	11
	0.30	0.037		5.257	
	0.83 0.90	0.102 0.110	28.84 28.50	4.939 4.864	D+E "
	1.29	0.154	25.97	4.325	E
	2.39	0.282	23.79	3.916	"
	3.33 ^a	0.392	22.57	3.705	C+E
	3.59 ^a	0.415	20.70	3.338	C "
	3.73 ^a 4.47 ^a	0.426 0.493	19.33 15.30	3.075 2.350	11
	10.57ª,c	1.065	-	-	**
Data taken	from 35(A) 1	sotherm			
50		-	31.76	5.574	В
	0.17	0.21	31.60	5.547	B+D
	0.13	0.016	31.70	5.569	"
	0.15	0.019	31.67	5.563	D
	0.28	0.035	30.02	5.178	11 11
	0.63	0.077	28.53	4.856	
	0.98 1.06	0.119 0.128	27.56 27.28	4.658 4.600	D+E "
				4.315	E
	1.25 1.87	0.149 0.220	25.93 23.96	4.315 3.927	11 E
	2.75	0.323	22.85	3.737	11
	4.01	0.469	21.21	3.456	**
	5.29	0.619	19.97	3.258	C+E
	5.32 14.06 ^c	0.623 1.468	19.97	3.259	C
	1 / () 6 V	LANK			

(1) Sodium sulfate; Na₂SO₄; [7757-82-6]

(2) Sodium iodate; NaIO₃; [7681-55-2]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

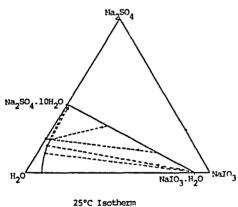
Foote, H.W.; Vance, J.E.

Am. J. Sci. 1930, 19, 203-13.

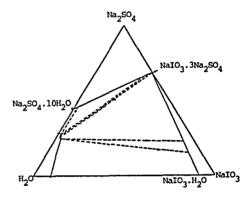
EXPERIMENTAL VALUES: (Continued)

^b A = Na₂SO₄.10H₂O; B = Na₂SO₄; C = NaIO₃.H₂O; D = NaIO₃.4Na₂SO₄;

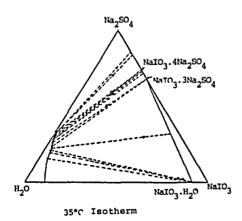
 $E = NaIO_3.3Na_2SO_4$


^c For the binary system the compiler computes the following:

soly of NaIO₃ = 0.479 mol kg⁻¹ at 25°C; 0.529 mol kg⁻¹ at 29.5°C


0.5973 mol kg^{-1} at $35^{\circ}C$; 0.8267 mol kg^{-1} at $50^{\circ}C$

COMMENTS AND/OR ADDITIONAL DATA:


The solubility isotherms are reported below (based on mass % units)

29.5°C Isotherm

NaIO3.4Na2SO4 vaIO3.3Na25O4

50°C Isotherm

- (1) Sodium chloride; NaCl; [7647-14-5]
- (2) Sodium iodate; NaIO3; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

Am. J. Sci. 1929, 17, 425-30.

VARIABLES:

Composition at 273, 288, 298 and 308 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL V	VALUES:	Composition	of saturate	d solutions		
t/°C	mass %	a10 ₃ mo1 % (compiler)	mass %	aC1 mol % (compiler)	Nature of the solid phase ^a	
0	-	-	26.34	9.928	A	
	0.29 0.37 0.38	0.032 0.041 0.042	26.36 26.28 26.30	9.970 9.942 9.952	A+D ''	
	0.54 0.66 0.73	0.059 0.072 0.079	24.16 23.08 22.62	8.995 8.527 8.332	D "	
	1.03 1.03	0.111 0.111	20.85 20.88	7.593 7.606	D+B	
	0.83 2.42 ^b	0.086 0.225	16.30 -	5.712 -	В	
15	-	-	26,38	9.947	A	
	0.97 0.97 0.97	0.109 0.109 0.109	26.14 26.12 26.30	9.943 9.934 10.02	A+D ''	
	1.29	0.144	24.64	9.287	D	
	1.68 1.71	0.185 0.189	23.14 23.14	8.650 8.653	C+D	
	1.75 1.87	0.190 0.196	20.73 16.32	7.601 5.782	C "	
					continued	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Sodium iodate, sodium chloride and water were placed in glass stoppered bottles, and the bottles rotated in a thermostat for 24 hours. Samples of the solution were drawn off through glass wool filters. The iodate content was determined by addking KI to the solution, acidifying with sulfuric acid, and titrating the free iodine with sodium thiosulfate solution. The chloride content was calculated from the IO3 concentration and the total weight of salt in solution. Water was found by difference.

The solid phases were analyzed as wet residues after largely freeing them from water by pressing between filter papers. The composition of the dry residue was then determined by Schreinemakers' method.

SOURCE AND PURITY OF MATERIALS:

The source of NaCl and NaIO₃ was not given in the original paper. The authors state that the salts were purified by usual methods, however, the details of purification were not reported.

ESTIMATED ERROR:

Nothing specified.

- (1) Sodium chloride; NaCl; [7647-14-5]
- (2) Sodium iodate; NaIO3; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Foote, H.W.; Vance, J.E.

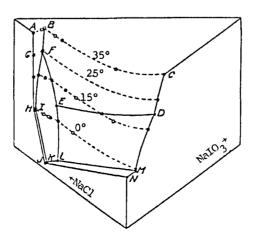
Am. J. Sci. 1929, 17, 425-30.

EXPERIMENTAL VALUES: (Continued)

Composition of saturated solutions

	N	aI03	N.	aC1	
t/°C	mass %	mol % (compiler)	mass %	mo1 % (compiler)	solid phase ^a
15	2.34 2.35	0.233 0.234	9.46 9.47	3.193 3.197	B+C
	2.53 5.88b	0.247 0.566	6.60 -	2.184	В "
25	-	-	26.50	10.00	A
	1.96 1.99 1.98	0.225 0.226 0.225	26.08 25.93 26.08	10.03 9.960 10.03	A+C ''
	8.66 ^b	0.856	-	-	С
35	- 1.70	- 0.193	26.66 26.20	10.08 10.05	A ''
	2.39 2.40 2.39 2.41	0.273 0.274 0.273 0.275	26.04 26.00 26.02 26.07	10.06 10.04 10.05 10.07	A+C "
	2.47 2.57 4.51 10.57 ^b	0.275 0.282 0.454 1.065	23.15 21.24 7.87	8.730 7.891 2.68	C "

soly of $NaIO_3 = 0.125 \text{ mol kg}^{-1}$ at $0^{\circ}C$


 $= 0.316 \text{ mol kg}^{-1} \text{ at } 15^{\circ}\text{C}$

 $= 0.479 \text{ mol kg}^{-1} \text{ at } 25^{\circ}\text{C}$

 $= 0.5973 \text{ mol kg}^{-1} \text{ at } 35^{\circ}\text{C}$

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherms are reproduced below (based on mass % units).

^a A = NaCl; B = NaIO₃.5H₂O; C = NaIO₃.H₂O; D = $2NaIO_3.3NaC1.10H_2O$

 $^{^{\}mbox{\scriptsize b}}$ For the binary system the compiler computes the following:

- (1) Sodium bromide; NaBr; [7647-15-6]
- (2) Sodium iodate; NaIO3; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.

J. Am. Chem. Soc. 1934, 56, 290-5.

VARIABLES:

Composition

T/K = 278 - 323

PREPARED BY:

Hiroshi Miyamoto

	ENTAL VALUES:	Compos	sition of satu			
		aBr	Na ~-	aI0 ₃	Density	Nature of the
t/°C	mass %	mo1 %	mass %	mo1 %	g cm ⁻³	solid phase ^a
5	45.08	12.57	0.00	0.00	1.489	A
	45.04	12.56	0.076	0.011	1.491	A+S5
	45.00	12.54	0.075	0.011	1.492	11
	45.07	12.57	0.073	0.011	1.492	Ħ
	45.04	12.56	0.075	0.011	1.492	11
	43.99	12.10	0.084	0.012	1.473	S 5
	39.98	10.46	0.124	0.0169	1.415	"
	35.04	8.655	0.231	0.0297	1.352	**
	29.50	6.874	0.584	0.0708	1.287	*11
	24.56	5.461	1.09	0.126	1.238	11
	23.53	5.186	1.27	0.146	1.229	S5+B
	23,49	5.176	1.28	0.147	1.230	***
	23.51	5.181	1.28	0.147	1.230	11
	22.95	5.027	1.25	0.142	1.225	В
	18.42	3.850	1.13	0.123	1.175	11
	14.13	2.832	1.09	0.114	1.132	11
	10.37	2.008	1.13	0.114	1.097	11
	4.97	0.920	1.44	0.139	1.052	11
	0.00	0.000	3.297	0.3094	1.027	**
	23.30	5.127	1.34	0.153	1.227	S5(m)
	21.71	4.723	1.78	0.201	1.215	S5+C(m)
	20.78	4.476	1.74	0.195	1.204	C(m)
	16.39	3.384	1.85	0.199	1.162	"
					co	ntinued

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Ternary complexes were stirred for 1-2 weeks at temperatures below 40°C, and for 2-4 days at higher temperatures (40-50°C). This length of time allowed for the attainment of equilibrium as determined in several cases by successive analysis of the solutions. Care had to be taken to seed each complex with the expected stable solid phase whenever possible, and to break up the caked hydrates which sometimes formed on mixing the salt with water in the preparation of the complexes. In one sample of the saturated solution, the iodate was determined by titration with standard thiosulfate solution. In another sample, the total solid was determined by evaporation of the solution at 100°C followed by one to two hours at 350°C. The concentration of the bromide was then determined by difference.

SOURCE AND PURITY OF MATERIALS:

The salts used were prepared by recrystallization of the best available c.p. material which, in the case of the bromide, usually contained from 0.5 to 1.0 % chloride.

The purified salts were dried to the anhydrous state and stored at 100°C.

ESTIMATED ERROR:

Nothing specified.

(1) Sodium bromide; NaBr; [7647-15-6]

(2) Sodium iodate; NaIO3; [7681-55-2]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS: Ricci, J.E.

J. Am. Chem. Soc. 1934, 56, 290-5.

				<u></u>		
EXPERIM	MENTAL VALUES		A COST SAME	· · · · I while		
	1	Composit NaBr	tion of satu NaI	urated solution	ons Density	Nature of the
t/°C	mass %	mol % (compiler)	mass %	mol % (compiler)	g cm-3	solid phase ^a
5	12.26 6.97 0.00	2.438 1.327 0.000	2.03 2.52 5.479 ^b	0.210 0.249 0.525	1.123 1.079 1.050	C(m)
15	46.54	13.23	0.00	0.000	-	A
	27.15	6.266	1.91	0.229	1.278	S5+C
	22.08 18.54 13.41	4.837 3.925 2.710	2.05 2.20 2.53	0.234 0.242 0.266	1.219 1.184 1.136	C "
	9.16 4.27	1.78 0.802	2.69 3.53	0.272 0.345	1.101 1.064	В
	0.00	0.000	5.85 ^b	0.562	1.051	11
25	48.41	14.11	0.00	0.000	1.530	A
	48.23 48.17 48.21 48.22	14.11 14.08 14.10 14.11	0.42 0.42 0.42 0.42	0.064 0.064 0.064 0.064	1.538 1.536 1.541 1.534	A+S5 '' ''
	48.21 47.73	14.10 13.87	0.42	0.064	1.537	" S5
	47.35 46.7 3 2 43.58	13.69 13.40 12.01	0.42 0.42 0.45 0.55 0.86	0.063 0.067 0.079 0.12	1.522 1.509 1.472 1.417	" " " " " " " " " " " " " " " " " " "
	39.55 38.83 36.61 35.23	10.40 10.13 9.343 8.867	0.86 0.95 1.31 1.51	0.12 0.13 0.174 0.198	1.417 1.406 1.380 1.367	11 11
	34.62 34.34	8.668 8.575	1.66	0.216 0.222	1.360 1.359	"
	32.79 32.72 32.56 32.63	8.084 8.063 8.011 8.034	2.13 2.15 2.18 2.17	0.273 0.275 0.279 0.278	1.344 1.343 1.343 1.343	S5+C " "
	32.68	8.050	2.16	0.277	1.343	11
	32.44 26.39 16.49 7.78 0.00	7.970 6.072 3.451 1.52 0.00	2.17 2.35 3.00 4.46 8.569 ^b	0.277 0.281 0.326 0.454 0.8460	1.338 1.266 1.172 1.104 1.075	C "' "
35	50.48	15.14	0.00	0.000		A
	50.04 50.00 50.02	15.16 15.14 15.15	1.01 1.02 1.02	0.159 0.161 0.161		A+S5 "
	49.46 47.82 46.46 44.96 42.59	14.86 14.05 13.42 12.75 11.76	1.03 1.08 1.18 1.30 1.60	0.161 0.165 0.177 0.192 0.230		S5 "" ""
	40.55 38.11	10.96 10.08	1.98 2.63	0.278 0.362		11 11
	38.1	10.08	2.6	0.358		S5+D(m?)

- (1) Sodium bromide; NaBr; [7647-15-6]
- (2) Sodium iodate; NaIO₃ [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

EXPERIMENTAL VALUES: (Continued)

ORIGINAL MEASUREMENTS:

Ricci, J.E.

J. Am. Chem. Soc. 1934, 56, 290-5.

1		Compo	sition of sat	urated solut	ions	
Į.		laBr		103	Density	Nature of the
t/°C	mass %	mol %	mass %	mol %	g cm-3	solid phase ^a
35	38.30	10.17	2.70	0.373		D(m?)
	36.52	9.498	2.81	0.380		"
1	34.51	8.776	2.95	0.390		"
	0.00	0.00	10.58 ^b	1.066		С
40	51.5	15.7	0.00	0.00		A
İ	50.84	15.67	1.37	0.220		A+S0
1	50.84	15.67	1.37	0.220		11
1	50.84	15.67	1.37	0.220		11
	50.37	15.42	1.39	0.221		S0
1	50.43	15.46	1.42	0.226		**
	49.38	14.94	1.53	0.241		**
1	48.41	14.49	1.71	0.266		ti
	47.95	14.27	1.77	0.274		S0+S5
1	47.96	14.28	1.80	0.279		S 5
i	46.82	13.74	1.89	0.288		11
į	45.93	13.34	2.00	0.302		11
[44.86	12.86	2.13	0.318		**
ŀ	43.37	12.25	2.48	0.364		"
	42.38	11.84	2.59	0.376		11
1	42.10	11.73	2.65	0.384		S5+D
İ	41.82	11.62	2.72	0.393		11
	41.96	11.67	2.69	0.389		11
	42.44	11.85	2.52	0.366		D(m)
İ	41.36	11.40	2.59	0.371		D
ļ	40.05	10.86	2.63	0.371		"
	39.5	10.64	2.65	0.371		D+C
1	37.73	9.952	2.75	0.377		D(m)
	37.29	9.789	2.80	0.382		11
	39.06	10.47	2.68	0.373		С
	36.79	9.575	2.62	0.355		11
	32.08	7.909	2.77	0.355		"
	27.16	6.355	3.04	0.370		**
	20.65	4.539	3.65	0.417		11
	0.00	0.000	11.70 ^b	1.192		"
45	52.55	16.24	0.00	0.000		A
	51.79	16.30	1.81	0.296		A+S0
	49.91	15.35	2.08	0.333		S0
	49.5	15.23	2.5	0.40		SO+D

50.29

48.64

45.95

42.63

0.00

15.67

14.79

13.45

11.94

0.00

2.56

2.51

2.50

2.58

12.83^b

0.415

0.397

0.380

0.376

1.322

D(m)

D

**

D+C

С

continued.....

COMPONENTS:
(1) Sodium bromide; NaBr; [7647-15-6]
(2) Sodium iodate; NaIO₃; [7681-55-2]
(3) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS
Ricci, J.E.

J. Am. Chem. Soc. 1934, 56, 290-5.

EXPERIMENTAL VALUES: (Continued)

Composition of saturated solutions

	N	aBr	Na	1103	Dens1ty	Nature of the
t/°C	mass %	mo1 % (compiler)	mass %	mo1 % (compiler)	g cm ⁻³	solid phase ^a
50	53.63	16.84	0.00	0.000		A
	53.0(+)	16.92	1.57(~)	0.261		A+E
	52.97	16.90	1.57	0.260		E
	52.57	16.89	2.37	0.396		E+S0
	52.39	16.80	2.40	0.400		S0
	52.12	16.65	2.40	0.399		11
	51.40	16.26	2.49	0.410		11
	50.97	16.06	2.62	0.429		SO+D
	50.90	16.02	2.63	0.430		**
	50.91	16.03	2.64	0.432		**
	50.93	16.04	2.63	0.431		tt
	50.30	15.69	2,60	0.422		D
	47.72	14.32	2.54	0.396		11
	44.74	12.89	2.56	0.384		11
	41.56	11.50	2.67	0.384		11
	38.56	10.29	2.86	0.397		11
	32.41	8.087	3.41	0.442		**
	26.02	6.105	4.30	0.525		**
	23.54	5.403	4.73	0.564		11
	21.46	4.841	5.15	0.604		D+C
	19.75	4.365	4.93	0.566		С
	19.57	4.313	4.86	0.557		H .
1	13.28	2.790	6.28	0.686		*1
ļ	6.63	1.34	9.03	0.952		**
	0.00	0.00	13.49 ^b	1.400		**

a $A = NaBr.2H_2O$; $B = NaIO_3.5H_2O$; $C = NaIO_3.H_2O$; $D = NaIO_3$; E = NaBr; $S5 = 2NaIO_3.3NaBr.15H_2O$; $S0 = 2NaIO_3.3NaBr.10H_2O$; m = metastable

soly of NaIO₃ = 0.2929 mol kg⁻¹ at 5°C = 0.3163 mol kg⁻¹ at 15°C = 0.4736 mol kg⁻¹ at 25°C = 0.5979 mol kg⁻¹ at 35°C = 0.6696 mol kg⁻¹ at 40°C = 0.7438 mol kg⁻¹ at 45°C = 0.7880 mol kg⁻¹ at 50°C

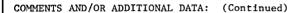
COMMENTS AND/OR ADDITIONAL DATA:

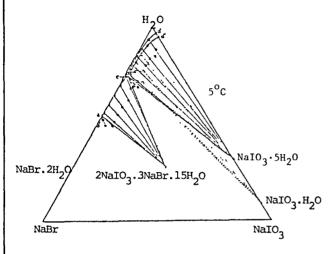
Isotherms based on mass % units are reproduced below.

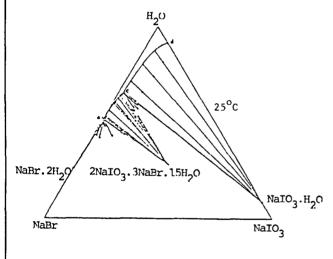
continued....

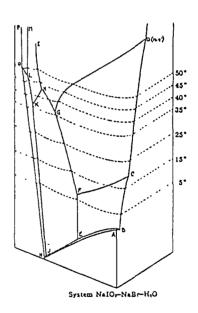
b For the binary system the compiler computes the following:

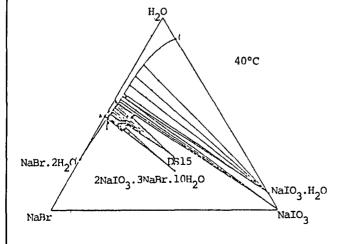
(1) Sodium bromide; NaBr; [7647-15-6]


(2) Sodium iodate; NaIO₃; [7681-55-2]


(3) Water; H₂0; [7732-18-5]


ORIGINAL MEASUREMENTS:


Ricci, J.E.


J. Am. Chem. Soc. 1934, 56, 290-5.

COMPONENTS: (1) Sodium iodide; NaI; [7681-82-5]

(2) Sodium iodate; NaIO₃; [7681-55-2]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Hill, A.E.; Willson, H.S.; Bishop, J.A.

J. Am. Chem. Soc. 1933, 55, 520-6.

VARIABLES:

Composition

T/K = 281 - 313

PREPARED BY:

Hiroshi Miyamoto

		NaI	1	NaIO3	Density	Nature of the
t/°C	mass %	mo1 % (compiler)	mass %	mo1 % (compiler)	g cm ⁻³	solid phase ^a
8	0.00	0.00	3.89 ^b	0.367	1.035	A
	6.05 17.18	0.783 2.471	1.99 1.44	0.195 0.157	1.069	11 Et
					1.169	
	19.47	2.882	1.84	0.206	1.196	A+S
	25.20	3.924	0.72	0.085	1.249	S
	40.70	7.629	0.08	0.011	1.445	***
	57.87	14.17	0.02	0.004	-	11
	62.44	16.66	0.02	0.004	1.861	S+D
	62.49	16.68	0.00	0.000	-	D
25	0.00	0.00	8.67 ^b	0.857	1.077	В
	11.57	1.617	4.23	0.448	1.107	17
	24.54	3.882	2.68	0.321	1.253	11
	28.70	4.758	2.48	0.311	1.290	11
	31.72	5.454	2.41	0.314	1.340	11
	31.74	5.455	2.36	0.307	1.340	**
	31.99	5.515	2.36	0.308	1.341	B+S
	33.04	5.749	2.04	0.269	1.352	S
	36.64	6.607	1.22	0.167	1.377	11
	46.08	9.359	0.31	0.048	-	11
	56.83	13.70	0.17	0.031	1.722	**

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The salts were weighed into stoppered Pyrex tubes with weighed amounts of water and stirred by mechanical inversion in a thermostat for 4-7 days.

Small samples of the saturated solution were withdrawn by suction through a filter into a pipet. One sample was dried to constant weight in the oven, while a second was analyzed for iodate.

Iodate was determined by iodometry, thiosulfate solution being used in the titration. The water was determined gravimetrically (after evaporation).

SOURCE AND PURITY OF MATERIALS:

Sodium iodate was recrystallized from water and dehydrated in an electric oven at 100°C Sodium iodide (c.p. grade) was purified by recrystallization and dried in an electric oven at 100°C.

ESTIMATED ERROR:

Soly: precision of the analyses about 0.3 %. Temp: not given.

- (1) Sodium iodide; NaI; [7681-82-5]
- (2) Sodium iodate; NaIO₃; [7681-55-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

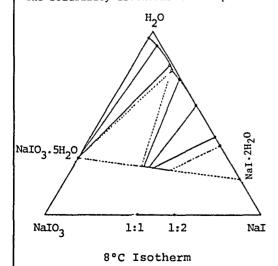
Hill, A.E.; Willson, H.S.; Bishop, J.A.

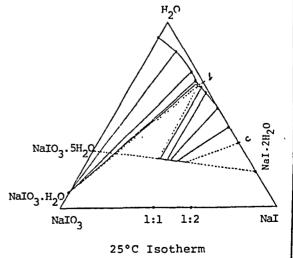
J. Am. Chem. Soc. 1933, 55, 520-6.

EXPERIMENTAL VALUES: (Continued)

	N	NaI	Na:	103	Density	Nature of the
t/°C	mass %	mo1 % (compiler)	mass %	mol % (compiler)	g cm ⁻³	solid phase ^a
25	64.67	18.06	0.08	0.017	-	S+D
	64.72	18.06	0.00	0.000	-	D
40	0.00 15.33 18.16 19.64 22.06 26.85 33.65 40.52 41.16 41.30 42.55 51.97	0.000 2.254 2.738 3.001 3.441 4.408 5.970 7.877 8.076 8.121 8.510 11.62	11.70 ^b 5.24 4.74 4.47 3.90 3.49 2.92 2.78 2.79 2.80 2.72 0.58	1.192 0.584 0.541 0.517 0.461 0.434 0.392 0.409 0.415 0.417 0.412 0.098		B "" "" C+S S
	64.40 66.15	18.04 19.15	0.47 0.32	0.100 0.070		11
	67.58	20.16	0.28	0.063		S+D
	67.35	19.87	0.00	0.000		D

^a A = NaIO₃.5H₂O; B = NaIO₃.H₂O; C = NaIO₃; D = NaI.2H₂O; S = solid solution


soly of $NaIO_3 = 0.205 \text{ mol kg}^{-1}$ at 8°C


 $= 0.480 \text{ mol kg}^{-1} \text{ at } 25^{\circ}\text{C}$

 $= 0.6696 \text{ mol kg}^{-1} \text{ at } 40^{\circ}\text{C}$

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherms are reproduced below (based on mass $\mbox{\em x}$ units).

b For the binary system the compiler computes the following:

366 Sodium lodate ORIGINAL MEASUREMENTS: COMPONENTS: (1) Sodium iodate; NaIO₃; [7681-55-2] Hill, A.E.; Ricci, J.E. (2) Potassium iodate; KIO₃; [7758-05-6] J. Am. Chem. Soc. 1931, 53, 4305-15. (3) Water; H₂0; [7732-18-5] VARIABLES: PREPARED BY: Composition at 278.2, 298.2, 323.2 K Hiroshi Miyamoto CONCRETE WATHER. Composition of saturated solutions

	N	aIO ₂		VTO.	D 4 4	N
t/°C	mass %	mol % (compiler)	mass %	KIO ₃ mol % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
5	0.00 1.41	0.000 0.136	5.16 4.71	0.456 0.420	1.043 1.051	A ''
	2.17	0.211	4.72	0.424	1.060	A+B
	2.48 3.28 ^b	0.238 0.308	3.19 0.00	0.283 0.000	1.046 1.028	В "
25	0.00 4.26	0.000 0.433	8.45 7.09	0.771 0.666	1.071 1.098	A ,,
	7.13	0.743	6.73	0.649	1.126	A+C
	7.79 8.57 ^b	0.793 0.846	3.79 0.00	0.357 0.000	1.103 1.074	C "
50	0.00 3.92 7.70	0.000 0.417 0.847	13.21 11.92 11.14	1.265 1.173 1.133	- -	A ''
	10.92	1.237	10.61	1.112	-	A+C
	11.41 12.55 13.49 ^b	1.261 1.349 1.400	7.93 4.24 0.00	0.810 0.421 0.000	- - -	C "
a , = '	KTO2: B	= NaTO2.5Ha0.	C = Na¹	TOo HoO		

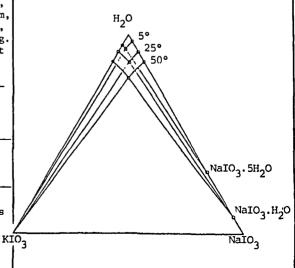
 $B = NaIO_3.5H_2O;$ $C = NaIO_3.H_2O$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The complexes used for the ternary system were made up from weighed amounts of water, dried NaIO3 and KIO3. For the 5°C isotherm, the solids were first dissolved by heating, and the solutions were seeded after cooling. The solutions were agitated in a thermostat at the desired temperature for about thirteen days.

For the analysis, samples of filtered solution were evaporated to dryness at 110°C, and other samples were titrated for iodate by iodometry.


SOURCE AND PURITY OF MATERIALS:

Nothing specified.

ESTIMATED ERROR:

Nothing specified, but the compiler assumes that the agreement between duplicate analyses was around ± 0.5 %.

COMMENTS AND/OR ADDITIONAL DATA:

5°C, 25°C, 50°C Isotherm (mass % units)

b For the binary system the compiler computes the following:
soly of NaIO₃ = 0.171 mol kg⁻¹ at 5°C; = 0.474 mol kg⁻¹ at 25°C;
= 0.7880 mol kg⁻¹ at 50°C.

- (1) Sodium iodate; NaIO₃; [7681-55-2]
- (2) Rubidium iodate; RbIO₃; [13446-76-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Vinogradov, E.E.; Karataeva, I.M.

Zh. Neorg. Knim. 1982, 27, 2155-7; Russ. J. Inorg. Chem. (Engl. Transl.) 1982, 27, 1218-9.

VARIABLES:

Composition at 323.2 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:

VALUES:	Compos	ition of satu	rated solut:	ions	
	N.	aIO ₃	R1	b10 ₃	Nature of the
t/°C	mass %	mo1 % (compiler)	mass %	mol % (compiler)	solid phase ^a
50	13.52 ^b	1.403	_	_	Α
	13.40	1.419	1.96	0.158	"
	13.77	1.465	2.03	0.164	A+B
	13.74	1.461	2.05	0.166	"
	12.20	1.283	2.50	0.200	В
	7.25	0.723	2.30	0.174	**
	3.96	0.383	2.32	0.170	**
	2.92	0.282	3.29	0.241	**
	-	_	4.39b	0.317	11

 $^{^{}a}$ A = NaIO₃.H₂O; $B = RbIO_3$

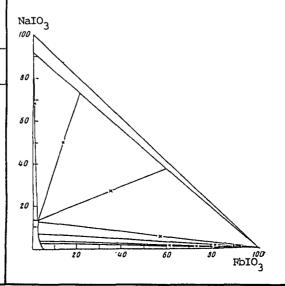
soly of $NaIO_3 = 0.7900 \text{ mol kg}^{-1}$

soly of $RbIO_3 = 0.176 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Probably the isothermal method was used. Equilibrium was established after 4-5 days. Rubidium and iodate ions in the liquid and solid phases were analyzed. The sodium content was determined by difference. The composition of the solid phase was determined by X-ray analysis.

SOURCE AND PURITY OF MATERIALS:


No information given.

ESTIMATED ERROR:

Nothing specified.

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram is given below (based on mass % units).

b For the binary systems the compiler computes the following:

- (1) Sodium iodate; NaIO₃; [7681-55-2]
- (2) Cesium iodate; CsIO₃; [13454-81-4]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Vinogradov, E.E.; Karataeva, I.M.

Zh. Neorg. Khim. 1982, 27, 2155-7; Russ. J. Inorg. Chem. (Engl. Transl.) 1982, 27, 1218-9.

VARIABLES:

Composition at 323.2 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:	Compos	Composition of saturated solutions				
	NaIO3		CsIO ₃		Nature of the	
t/°C	mass %	mo1 % (compiler)	mass %	mo1 % (compiler)	solid phase ^b	
50	13.52 ^b	1.403	_	-	Α	
	12.15	1.262	1.41	0.0942	11	
	12.46	1.309	2.16	0.146	A+B	
	12.46	1.306	1.96	0.132	11	
	12.49	1.314	2.23	0.151	**	
	12.61	1.325	2.02	0.136	11	
	11.77	1.231	2.40	0.161	В	
	10.27	1.054	2.12	0.140	11	
	6.93	0.688	2.18	0.139	11	
	3.34	0.324	3.44	0.215	**	
	-		5.07 ^b	0,312	tt	

^a $A = NaIO_3.H_2O;$ $B = CsIO_3$

b For binary systems the compiler computes the following:

soly of $NaIO_3 = 0.7900 \text{ mol kg}^{-1}$

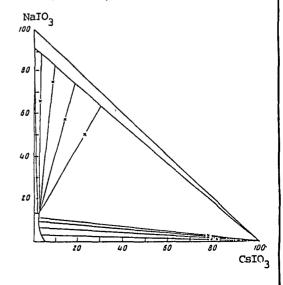
soly of $CsIO_3 = 0.174 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Probably the isothermal method was used. Equilibrium was established after 4-5 days. Cesium and iodate ions in the liquid and solid phases were analyzed. The sodium content was determined by difference. The composition of the solid phase was determined by X-ray analysis.

SOURCE AND PURITY OF MATERIALS:


No information given.

ESTIMATED ERROR:

Nothing specified.

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram is given below (based on mass % units).

- (1) Sodium iodate; NaIO3; [7681-55-2]
- (2) Aluminum iodate; Al(IO₃)₃; [15123-75-3]
- (3) Water; H₂0; [7732-18-5]

Shklovskaya, R.M.; Arkhipov, S.M.; Kidyarov, B.I.; Tokareva, A.G.

Zh. Neorg. Khim. <u>1980</u>, 25, 1423-4; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1980</u>, 25, 791.

VARIABLES:

Composition at 298.2 K

PREPARED BY:

Hiroshi Miyamoto

ORIGINAL MEASUREMENTS:

EXPERIMENTAL VALUES: Composition of saturated solutions at 25°C

NaIO ₃		A1(103)3	Nature of the	
mass %	mol % (compiler)	mass %	mo1 % (compiler)	solid phase ^a	
8.66 ^b 8.30	0.856 0.821	0.38	0.013	A ''	
8.15	0.819	2.02	0.0728	A+B	
6.83 6.44	0.678 0.638	2.21 2.38	0.0787 0.0846	В	
6.30 5.14	0.624	2.45 2.66	0.0871 0.0936	11	
3.60	0.350 0.146	3.18 4.15	0.111 0.143	11 11	
1.52 0.9	0.146	4.48	0.154	11	
_	_	5.70 ^b	0.197		

a A = NaIO₃.H₂O

soly of NaIO₃ = $0.479 \text{ mol kg}^{-1}$

soly of A1(IO₃)₃ = 0.110 mol kg^{-1}

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. Equilibrium was reached within 15-20 days. The aluminum content in the co-existing phases was determined by complexometric titration.

Sodium was determined by the flame photometry. The photometry was carried out on solutions in which the sodium concentration did not exceed 10 $\mu g dm^{-3}$.

SOURCE AND PURITY OF MATERIALS:

Aluminum iodate hexahydrate was synthesized from iodic acid and aluminum hydroxide. Chemically pure grade sodium iodate monohydrate was recrystallized twice from aqueous solution.

ESTIMATED ERROR: Soly: 1-3 rel %.

Temp: precision \pm 0.1 K.

 $B = A1(103)_3.6H_20$

b For binary systems the compiler computes the following:

- (1) Sodium iodate; NaIO₃; [7681-55-2]
- (2) Hafnium iodate; Hf(IO₃)₄; [19630-06-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Shklovskaya, R.M.; Arkhipov, S.M.; Kidyarov, B.I.; Poleva, G.V.; Timofeev, S.I.

Zh. Neorg. Khim. 1983, 28, 2435-6; Russ. J. Inorg. Chem. (Engl. Transl.) 1983, 28, 1384-5.

VARIABLES:

Composition at 298.2 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES: Composition of saturated solutions at 25°C

NaIO ₃		Hf(Nature of	
mass %	mol % (compiler)	mass %	mol % (compiler)	the solid phase ^a
-	_	0.00037	7.6×10^{-6}	A
0.87 1.45	0.080 0.134	0.00036 0.00034	7.4 x 10~6 7.1 x 10 ⁻⁶	11
2.38	0.221	0.00027	5.7×10^{-6} 5.3×10^{-6}	**
3.29 4.03	0.309 0.381	0.00025 0.00023	4.9×10^{-6}	**
4.89 5.68	0.466 0.545	0.00020 0.00018	4.3×10^{-6} 3.9×10^{-6}	**
6.38	0.617	0.00020	4.4×10^{-6}	**
7.18 8.23	0.699 0.810	0.00032 0.00034	7.0×10^{-6} 7.5×10^{-6}	11
8.62	0.851	0.00035	7.8×10^{-6}	A+B
8.66 ^b	0.856	-	-	В

^a $A = Hf(IO_3)_4$ $B = NaIO_3.H_2O$

soly of NaIO₃ = 0.479 mol kg⁻¹ soly of Hf(IO₃)₄ = 4.2 x 10^{-6} mol kg⁻¹

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. Equilibrium was reached in 25-30 days. Samples of the coexisting phases were analyzed for sodium by emission spectrometry. The hafnium content was determined potentiometrically using Arsenazo III after reducing the iodate ion with hydroxylamine.

The composition in the solid phase was determined by the method of residues and the result was checked by X-ray analysis.

SOURCE AND PURITY OF MATERIALS:

C.p. grade ${\rm NaIO_3.H_2O}$ was recrystallized from distilled water.

Hafnium iodate was prepared by the action of aqueous iodic acid solution on freshly precipitated hafnium hydroxide (ref 1.)

ESTIMATED ERROR:

Soly: within 1-3 % rel. % (emission

spectrometry for Na). Temp: precision \pm 0.1 K.

REFERENCES:

 Deabriges, J.; Rohmer, R. Bull. Soc. Chim. Fr. 1968, 2, 521.

b For binary systems the compiler computes the following:

COMPONENTS: (1) Sodium iodate; NaIO₃; [7681-55-2] Meerburg, P.A. (2) Iodic acid; HIO₃; [7782-68-5] Z. Anorg. Allg. Chem. 1905, 45, 324-44. (3) Water; H₂O; [7732-18-5] VARIABLES: T/K = 303 Composition PREPARED BY: Hiroshi Miyamoto

EXPERIMENTAL	VALUES:	Composition of	saturated	solutions at 30°	°C
	Iodi	c Acid	Sodium	Iodate	Nature of
	mass	% mol %	mass %	mol %	the solid
		(compiler)		(compiler)	phase
	0	0	9.36 ^b	0.931	Α
	1.98	0.526	9.52	0.968	**
	4.86	0.576	10.22	1.077	11
	5.86	0.708	11.04	1.187	**
	7.40	0.915	11.60	1.275	A(m)
	9.73	1.280	14.73	1.722	11
	6.76	0.826	11.18	1.215	A+C
	6.75	0.824	11.10	1.205	tt
	6.66	0.814	11.28	1.226	11
	7.80	0.955	10.30	1.121	С
	9.15	1.120	9.00	0.980	"
	9.93	1.222	8.71	0.953	ii.
	11.20	1.280	7.54	0.826	n
	11.89	1.471	7.21	0.793	C+D
	11.75	1.451	7.18	0.788	"
	14.62	1.822	5.65	0.629	D
	23.23	3.139	3.69	0.443	11
	32.68	4.920	2.91	0.389	11
	40.91	6.882	2.64	0.395	11
	46.62	8.567	2.67	0.436	***
	55.48	11.77	2.12	0.400	11
	65.47	16.94	1.83	0.420	*1
	76.19		1.42	0.426	D+B
	76.70		0	0	В
1					

a $A = NaIO_3.1.5H_2O;$ $B = HIO_3;$ $C = Na_2O.2I_2O_5;$ $D = NaIO_3.2HIO_3.$

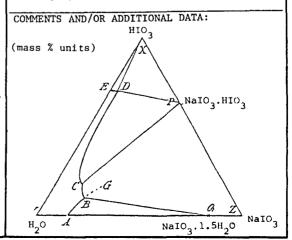
soly of $HIO_3 = 18.71 \text{ mol kg}^{-1}$ soly of $NaIO_3 = 0.522 \text{ mol kg}^{-1}$

METHOD/APPARATUS/PROCEDURE:

A mixture of NaIO3, HIO3 and water was placed in a bottle and the bottle agitated in a thermostat for a week or more at a desired temperature. Equilibrium was established from supersaturation.

The iodic acid and sodium iodate contents were detd as follows: an excess of KI was added to an aliquot of satd sln, and the HIO3 content detd by titration of the iodine liberated with standard sodium thiosulfate. Dil sulfuric acid was then added to the solution and the iodine liberated was again titrated with sodium thiosulfate to obtain the total iodate concentration.

The sodium iodate concentration was calculated from the difference between the second and the first titration.


Composition of solid phases determined by the method of residues.

SOURCE AND PURITY OF MATERIALS

Nothing specified.

ESTIMATED ERROR:

Nothing specified.

b For binary systems the compiler computes the following:

COMPONENTS: (1) Sodium iodate; NaIO₃; [7681-55-2] (2) Iodic acid; HIO₃; [7782-68-5]

Shibuya, M.; Watanobe, T. Denki Kagaku 1967, 35, 550-8

ORIGINAL MEASUREMENTS:

(3) Water; H₂0; [7732-18-5]

VARIABLES: Composition T/K = 288.2 PREPARED BY:

Hiroshi Miyamoto and Mark Salomon

EXPERIMENTAL VALUES:	Compos	ition of sa	turated soluti	lons at 15.0°	C
Iodic acid mass %	mol % (compiler)	Sodium Io	date mol % (compiler)	density g cm ⁻³	Nature of the solid phase ^a
0.00 0.62 1.79 2.59 3.81 5.12 5.66	0.000 0.067 0.197 0.287 0.428 0.583 0.649	5.87 ^b 5.87 5.87 5.92 5.90 5.99 6.14	0.564 0.568 0.574 0.584 0.589 0.606 0.626	1.051 1.057 1.070 1.077 1.089 1.103 1.109	A "" "" "" ""
7.63 8.06	0.895 0.947	6.38 6.18	0.665 0.646	1.132 1.135	A+B B
9.11 10.57 12.21 19.16 33.45 43.26	1.08 1.256 1.459 2.435 5.018 7.444	5.64 4.74 3.68 2.43 1.88 1.82	0.592 0.501 0.391 0.274 0.251 0.278	1.143 1.145 1.152 1.215	B+C C "

^a $A = NaIO_3.5H_2O;$ $B = 2NaIO_3.I_2O_5;$ $C = NaIO_3.I_2O_5$

Soly of NaIO₂ = $0.315 \text{ mol kg}^{-1}$

AUXILLARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

was detd by difference.

Isothermal method by three techniques depend-Sodium iodate was recryst three times from ing upon mole fraction, x, of HIO3. (1) For an aqueous sln prepd by electrolytic oxidax = 0 to 0.574. Excess acid added to NaIO₃ sln and stirred for 5 h. (2) For x = 0.574to 0.646. Ag acid sln for x = 0.638 was cooled to obtain HIO3 crystals. The crystals were added to an unsatd sln of NaIO3, and the mixture was stirred for a long time. (3) x= 0.646 to 1.0. Method essentially identical to (2) except that the acid crystals pptd from a sln where x = 0.883, and stirring time was stated as 48 h. After equil was established and the slns allowed to settle, aliquots of satd sln were withdrawn with a pipet and weighed. The densities of the satd slns were detd. The total iodate concn was detd iodometrically, and

the HIO3 detd by acid-base titrn. Sodium

The composition of the solid phase was detd as follows: chem analyses were used to detn the acid and NaIO3 contents, and thermogravimetry and NMR were used to detn the water content.

SOURCE AND PURITY OF MATERIALS:

tion of iodine in alkaline sln. Iodic acid was prepd by ion exchange as follows: aq NaIO3 sln was passed through a column of H⁺-resin (Amberlite IR 120), and the eluate was concentrated to about 30 % acid content by evaporation. The acid content was detd by acid-base titration.

ESTIMATED ERROR:

Soly: rel error probably \pm 0.2 % (compilers).

Temp: precision ± 0.05 K.

b For the binary system the compiler computes the following:

- (1) Sodium iodate; NaIO3; [6781-55-2]
- (2) 6,7,10,17,18,20,21-Octahydrodibenzo

ORIGINAL MEASUREMENTS:

Kolthoff, I.M.; Chantooni, Jr., M.K.

[b,k] [1,4,7,10,13,16] hexaoxacyclooctadecin (dibenzo-18-crown-6); C₂₀H₂₄O₆; [14187-32-7]

Anal. Chem. 1980, 52, 1039-44.

(3) Methano1; CH40; [67-56-1]

VARIABLES:

PREPARED BY:

T/K = 298

Hiroshi Miyamoto

EXPERIMENTAL VALUES:

The solubility product of $NaIO_3$ in methanol at 25°C is

$$1.5 \times 10^{-7} \text{ mol}^2 \text{ dm}^{-6}$$

COMMENTS AND/OR ADDITIONAL DATA:

In solutions saturated with respect to NaIO3 and dibenzo-18-crown-6 (DB-18), the authors studied the equilibrium

$$Na^{+} + L = LNa^{+} ; K_{f}(LNa^{+}) = [L][Na^{+}]/[LNa^{+}]$$

where L = (ligand) concentration of dibenzo-18-crown-6. Details of experimental method presumed to be similar to those for KIO3-DB-18-MeOH system (compiled elsewhere in this volume). Authors only report $\log \left[K_f(LNa^+)/mol^{-1} dm^3 \right] = 4.4$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A Markson No. 1001 Na $^+$ specific ion electrode used to determine $a_{
m Na}^{+}$. The electrode was calibrated and found to respond in a Nernstian manner.

SOURCE AND PURITY OF MATERIALS:

Fisher "c.p." grade ${\tt NaIO_3}$ was recrystallized 3 times from distilled water, and dried at 70°C.

(Fisher "Spectro purity" grade) was distilled from magnesium turnings.

ESTIMATED ERROR:

Nothing specified.